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Abstract

Conformal arrays are popular antennas for aircraft, spacecraft and

land vehicle platforms due to their inherent low weight and drag prop-

erties. However, to date there has been a dearth of rigorous analyt-

ical or numerical solutions to aid the designer. In fact, it has been

common practice to use limited measurements and planar approxi-

mations in designing such non-planar antennas. In this paper, we

extend the finite element-boundary integral method to scattering by

cavity-backed structures in an infinite, metallic cylinder. In particular,

we discuss the formulation specifics such as weight functions, dyadic

Green's function, implementation details and particular difficulties in-

herent to cylindrical structures. Special care is taken to ensure that

the resulting computer program has low memory demand and mini-

mal computational requirements. Scattering results are presented and

validated as much as possible.



1 Introduction

Conformal antenna arrays are attractive for aircraft, spacecraft, and land

vehicle applications since these antenna systems have low weight, low drag,

flexibility, and cost advantages over conventional protruding antennas. The

majority of previous studies pertaining to non-planar conformal antennas

has been conducted experimentally due to a dearth of rigorous analysis tech-

niques. Traditional rigorous techniques involve an integral equation and are

limited in terms of radius of curvature and structural complexity. Some ap-

proximate methods have been considered but these are restricted in accuracy

and element shape.

Recently, the finite element-boundary integral (FEM-BI) method was

successfully employed for the analysis of large cavity-backed planar arrays

[1]. The resulting system is sparse due to the local nature of the finite ele-

ment method, whereas the boundary integral sub-matrix is fully populated.

However, by resorting to an iterative solver such as the Biconjugate Gradi-

ent (BiCG) method, the boundary integral sub-system may be cast in circu-

lant form allowing use of the Fast Fourier Transform (FFT) in performing

the matrix-vector products. This BiCG-FFT solution scheme ensures O(N)

memory demand for the=entire FEM-BI systemand minimizes the computa-

tional requirements.

In this paper, the FEM-BI formulation is extended to scattering by aper-

ture antennas conformal to a cylindrical metallic surface. In contrast to

the planar aperture array, the implementation of the cylindrically conformal

array requires shell-shaped elements rather than bricks, and the required ex-

ternal Green's function must satisfy the boundary conditions on the surface

of the cylinder. In its exact forml this Green's function is an infinite series

which imposes unacceptable computational burdens on the method. How-

ever, for large radius cylinders, a suitable asymptotic formula is available

and herein used for an efficient evaluation otrthe Green's function. In ad-

dition, the resulting BI system is again cast in circulant form to ensure an

O(N) memory demand and to take advantage of the FFT's efficiency when

carrying out the matrix-vector product.

A primary difficulty in studying cavity-backed antennas mounted on curved

surfaces is the lack of reference data. In this paper, scattering calculations

based on the FEM-BI method are compared with data based on different

techniques. Although such validation is necessarily limited, it provides con-
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fidence in the formulation's accuracy so that this approach may be used in

extending the available reference data.

2 FEM-BI for Circular Cylinders

In this section, the FEM-BI formulation is developed for cavities recessed

in an infinite metallic cylinder, having walls which coincide with constant

p-,¢- or z-surfaces (see figure 1). As usual, the finite element formulation

permits substantial modeling flexibility, including cavity inhomogeneities,

lumped loads, super/substrate antenna configurations, or microstrip line and

so on.

The FEM-BI approach possesses both low memory and computational

demand when implemented with a BiCG-FFT solver, Although the system

of equations associated with the FEM formulation is sparse, the boundary

integral sub-matrix is fully populated. However, if the aperture mesh is a

uniform grid, the BiCG-FFT solver may be employed for that portion of

the system thus retaining O(N) memory demand for the entire system. In

addition, the solver require low computational demand since both sparse

matrix-vector products and discrete convolutions using FFTs require only

O(NlogN) operations per iteration.

The FEM-BI formulation begins with the weak form of the vector wave

equation followed by specification of appropriate vector shape functions and

dyadic Green's function. The resulting FEM-BI equations are then used to

solve for the total electric fields within the cavity and on the aperture (see

for example Volakis et al. [2]). For the specific configuration at hand, the

weak form of the wave equation can be written as

fv, { V x I'_e'_(p'¢'z)'V x I_dp'¢'z)/zr(p,¢, z)

-k2oe,.(p,¢,z)l_j(p,¢,z) • _(p,¢,z)}pdpdCdz

_:(a,¢,5,) ×/_(a,¢',z'). 17dj(a,¢',z')] de' dz'dCdz = f_"' + f._*' (1)

In this, _ are vector basis functions with support over the volume V/which is
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Figure 1: Illustration of a typical cavity-backed antenna situated on a metal-

lic cylinder and the associated coordinate system.



associatedwith the i th degree of freedom, and in a similar fashion, S, and ,.%

represent aperture surfaces associated with the i th and jth degrees of freedom,

respectively. The appropriate dyadic Green's function is denoted by G2 and it

has convolutional (_ = if- q_', 2 = z - z') form when evaluated on the surface

of the cylinder, p = a. The unprimed coordinates represent the test point

while the primed ones denote the source point. The free-space propagation

constant is given by ko = 2-* where )_o is the free-space wavelength. The

cavity is filled with an inhomogeneous material having relative constitutive

properties er and/_r. The function 6a(i)Sa(j) is the product of two Kronecker

delta functions. Hence, it identifies which pairs of unknowns belong to the

aperture and accordingly contribute to the boundary integral sub-matrix.

The FEM-BI equation (1) may be rewritten in matrix form as

[0] [0]] (E?') (0} (9)

where the entries of [.A] are due to the FEM portion of the formulation and

[_7] is the boundary integral sub-matrix. In (2), E_ p and Ej" denote degrees

of freedom associated with the aperture and interior fields, respectively. In

this, f_t are functions of the external excitation and will be discussed later

in the paper.

An important factor in choosing the finite elements for gridding the cav-

ity is the element's suitability for satisfying the mathematical requirements

of the formulation as well as the physical features of the antenna system.

Traditional node-based finite elements associate the degrees of freedom with

the nodal fields and have proven unsatisfactory for three-dimensional electro-

magnetics applications since they do not correctly represent the null space

of the curl operator and hence spurious modes are generated [3, 4]. In con-

trast, edge-based elements correctly model the curl operator and therefore

the electromagnetic fields. In addition, edge-based elements avoid explicit

specification of the fields at corners where edge conditions may require a sin-

gularity. Jim and Volakis [6] presented edge-based brick elements which are

convenient for rectangular-type structures and cavities. For cavities residing

in a circular cylinder, shell elements are the natural choice.

Cylindrical shell elements possess both geometrical fidelity and simplicity

for cylindrical-rectangular cavities. Figure 2 illustrates a typical shell element

which has eight nodes connected by twelve edges: four edges aligned along
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each of the three orthogonal directions of the cylindrical coordinate system.

Each element is associated with twelve vector shape functions given by

• ,,(p,4,_) : _(p,4,_;p_,.,_,,+), _,_(p,_,_) = _(p,_,_;po,.,--,,-)
ffz58(p,_,z)= _(p,_,z;pb,-,zb,--), ffZ67(p,_,z)=ffZ_(p,_,_;po,.,zb,+)

iTV15(p,dp,z) = l_,(p, (_,z;pb,c_, .,+ ),

ffz48(p,_, _) = ffz (p, 4, z;p_,4,,.,-),

ff_6(p,_,z)= _z(p, _,:;po, 4_,.,-)
• 37(p,_,_) = _z(p, _, z;po,_,,., +)

(3)

where l_tk is associated with the edge which is delimited by local nodes (1,k)

as shown in figure 2. As seen from (3), three fundamental vector weight

functions are required for the complete representation of the shell element.

They are

_.(p,_,z;_,$,_,,) = ,_h
- g

_(p,_,z;k,_,_,_) = g(p-p)(_-_)_

_'_(p,_,_;_,$,_,_) = _(p-_)(_-_)_ (4)

where the element parameters (p,,, p_, _bt, dp,, z_, zt) are shown in figure 2, t =

p_-p_, a = _b_-q_t and h = zt-z_. The !-term which appears in the
P

definition of the/%directed weight _) is essential in satisfying the divergence

free requirement, i.e. so that V. W./ = 0 _. Note that as the radius of the

cylinder becomes large, the curvature of these elements decreases, resulting

in weight functions which are functionally similar to the bricks presented

[_rj (p, _b,z) will only satisfy this requirement within the volume of the element. These
weighting functions introduce artificial charges on the faces of the element and are not di-
vergenceless at element interfaces. This is allowable since these elements do not guarantee
normal field continuity across the element faces.



by Jin and Volakis [6]. Having specified the vector basis functions, we may

proceed to develop the matrix entries for the system (2).

The FEM-BI system is composed of two parts: a sparse FEM matrix and

a fully populated BI sub-matrix as shown in (2). The FEM matrix entries

are represented by

AO 1 i_)ij .2 ,(2)0= -- - (5)

where constant material properties have been assumed within each element.

The subscripts (i,j) refer to the row and column of the matrix entry and

correspond to the test and source edges, respectively. The auxiliary functions

1(1)is fv, ×st

V x l_g't(p,¢,z;_i,¢,,_'i, gi)pdpdCdz

IJ_)iJ = IV, l_a(p, dp, z;pj,_j,_.j,_j)'_= : Wt(p,_b,z;pi,¢i,z.i, si)pdpdCdz__;_: _ (6)

are identically zero unless both test and source edges share at least one el-

ement in common, resulting in a highly sparse system. Physically, such a

system is a consequence of the locality property inherent in a partial differ-

ential equation formulation. In (6), the direction of the source and test edges

are represented by (s, t) E {p, ¢, z}, respectively. Since the edges of the mesh

are aligned along three orthogonal directions, only six combinations of (s, t)

are required for 1 (1) and only three such combinations for I (:) and all of these

are evaluated in Appendix A. Since (6) is symmetric with respect to source

and test edges, the FEM matrix will also be symmetric.

A lumped impedance post may be included in the formulation by adding a

term to (1) and equivalently to (5); surface or sub-surface metallization layers

may also be modeled. Radially oriented lumped loads are approximated

in the FEM-BI formulation by a filamentary load located at (eL, ZL) [2].

Such posts have length l, cross-sectional area s and impedance ZL. The

contribution to [A] is given by

Aij = 3koZo--_L"l fv _(¢--¢L)_(Z--p ZL)Wi(p,¢,z)Wj(p,¢,z)pdpdCdz(7 )

which may be readily evaluated in closed form. In addition, infinitesimally

thin metallization layers may be represented by simply fixing a priori the
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weight coefficientsto zero for weights associatedwith edgeswhich are tan-
gential to the metal. This is a consequenceof using a total electric field
formulation. The symmetry and sparsity of the FEM system [,4] is main-
tained after the addition of theseloadswhile the BI system [_] remains fully
populated and symmetric.

The boundary integral provides an exact boundary condition for mesh
closure and its construction relieson a cylindrical dyadic Green's function.
The entries of the boundary integral sub-matrix are

G_j = (&a)_ W,(a, ¢, z; t_,,¢,, _,, _,)"
t

_(a,¢, z) × U%(a,&_) × _(_, ¢',..')]

"1

•W,(a,¢',z';_.i,¢Sj,i.i,_j)d¢' dz'dCdz (8)

where the weight functions are given by (4) and evaluated at the surface

p = a. In (8), the dyadic Green's function (92) satisfies both the radiation

condition and the Neumann boundary condition at p = a. This dyadic

Green's function may be expressed exactly [8]

°° (k,) 2 l H?)('Y) e.i(n_,-k,_)dk _c"(_,,_, _,)= (2;_), .=__

1 oo oo (nk, _ H_(2)(7)ej(,,4,_k.,)dk "

' b-: -= kkoOk.]

where 3' = kpa and kp = _ - k_. However, for large radius cylinders, (9)

is computationally prohibitive.'" In these cases, which are of main concern

in this paper, it is advantageous to employ an asymptotic expression for G_

[9, 10, 11, 12]. These employ a creeping wave series expansion of which only

the two direct path contributions (see figure 3) are retained. The formula

due to Pathak and Wang [9]

G_Z(a,¢,5) ,_ jk°qe-Jko_ _ (cos20+q(1-q)(2-acos20))v(_)}t

(9)
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Figure 3: Geodesic paths on a circular cylinder.
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O_'(_,,L__) J2@qe Jk°'sinOcosO{ (1- 3q(1- q))v(a)}

-J2@qe-Jk*'{ (sin_O + q(1- q)(2- 3sin20)) v(,3)

+q (u(a)- v(m)]}
(10)

[ cos_0 1} _z_ has proven quite accurate. In the deft-where fl = ks [_-,-,-,-,-,-,-,-,-_o_land q = ko_

nition of fl, s is the usual geodesic path length (s = _/(a}) 2 + z 2) and 0 is

the direction of the trajectory (0 = tan-' [-_]). Depending on which of the

two direct paths (shown in figure 3) is used, cI, = _ or } = 2rr - ¢. The soft

and hard Fock functions, u(_) and v(fl) respectively, are characteristic of

on-surface creeping wave interactions and have been extensively investigated

by Logan [13]. Although computation of the Green's function (10) is now

tractable, evaluation of (8) must be done so that a discrete convolutional

system is maintained and the singularity of (8) at s = 0 is properly treated.

Care must be taken in evaluating (8) so that the overall storage require-

ment remains O(N) and the singular integrals of (8) are accurately computed.

If uniform zoning is used, the resulting sub-matrix ([{7]) is block Toeplitz and

hence amenable to solution using the BiCG-FFT method. For the non-selfcell

contributions, mid-point integration may be used while a regularization pro-

cedure must be employed for the self-cell. Bird [12] noted that (10) recovers

the metallic screen Green's function when /3 = 0 within the available ap-

proximation order. This suggests that (8) may be regularized by adding and

subtracting from (10) the function

[_ VV] e --ik°n2ao(a,&_)= +_ _ ; R=l_'-e' I
(11)

which is the free-space dyadic Green's function multiplied by two. The re-

sulting regularized Green's function (curvature contribution) is given by

QZ'(a,6,e) ~ jkoqe-Jko_ _ + - q)(2-t )
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jk°qe-Jk°'sinOcosO{ (1- 3q(1- q))Iv(3)- 1] }

jko {2_rqe-Jk°° (sin20 + q(1 - q)(2 - 3sin_O)) [v(_) - II

+q [_c_0(_(_)_ _(_))]}

(12)

and since it is no longer singular it may be evaluated numerically. The planar

contribution may be calculated in the manner described previously by Jin

and Volakis [5]. The FEM-BI matrix has now been fully developed and it

remains to specify the excitation function for external sources.

3 Plane Wave Excitation

Plane wave excitation of the geometry is considered in this section for scatter-

ing analysis. The use of the exact boundary condition in (1) allows coupling

bfan exierior exchation fie|cI=_nto the cavity.-We v_]r-describe the form of

the source functional, f_t, and discuss its numerical implementation.

The forcing functional, due to exterior sources (f_t) is given by .....

f._:a = jZokoa fs Wi(a,¢',z'). t_(a, ¢', z') × H_t(a,¢',z')d¢' dz'
i

(13)

where l_+(p, ¢, z) is the testing weight for the i th row of the matrix and _ut

represents the magnetic field on the cylinder's surface in the absence of the

cavity. A plane wave

E' = _'e -Jk°(v'_3

/T = L(k' x _+)e-sko(k'_

= ]Io [_i sin,,/cosOi__icos,),_ k, sin'Tsin0/] eJko[p sin O, cos (¢-¢,) +z cos 0,]

(14)

is assumed to be incident on the cylinder from the direction (0+,¢i) where

7 is the polarization angle and _; = 0icos 7 + q_+sin 7 is the electric field

polarization. The total surface field is given by the sum of the incident
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and corresponding scattered field from the infinite metallic cylinder [14].
Specifically,

•-#. --tgJq_(a, ¢, z) = H'(a,¢,z) + H:_,(_,¢, .-)

= _HT'+_HT' (15)

where

H_'(a, ¢,z)
ejko cos O, z ao COS '_

= -2Y°Trko asinO, ,:-ooy]_ .H_:)(koasinO,)F

" sinz2°-s0--'] e"C_++-_,'
J koasinO, H'n(2)(koasinO,)]

fl;'t(a'¢'z) = 32Y°"_oae'7 ,=-00 Ln'.(2)"-_(koasin-_O_)] (16)

is obtained from traditional modal analysis. These expressions may be ap-

proximated by retaining only a few terms of the series if koa sin 0i is small.

However, as this parameter becomes large (e.g. for large a and 0i _ 90°),

(16) may be replaced with equivalent asymptotic representations similar to

those considered earlier. Utilizing Watson's transformation and Fock theory

[14] in connection with (16), we find that

H71

I-I_ 1

2

-Yo sin 3' sin O,e"ik°<°'°': E e-Jk°a'inOdiP [g(°)(rn_p)] *
p--1

2 •

r,,_ _,.oCO.O,:E _-_,.oo.,.0,o,[s(o)(,.,,<I>)]
j2Yo cos 3' koa sin 0i

p=l

-I_ Sin 3'cos Oie ik°¢°'°'_ Z(--1)Pe -jk°"sin°'*" (°)(m_p)

p=l

-J koa sin Oi9(1) (m_p (17)

in which (}, = _-(¢-¢i), ¢2 - (¢-¢i)-_, m = [ 2 ] , and

complex conjugation is denoted by an asterisk. The appropriate far-zone

Fock functions (g(0), g(_) and f(0)) are given by Logan [13].
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The asymptotic formulas(17) arequite accurateexcept in the geometrical
optics region (¢ _ ¢i). In this case,Goriainov's [15]expressions

H_U t -Vo sin _sin Oie'ik°¢°*o'z{ e -jk°"'"°'_' [gI°)(nl(I )l )]*

+_jkoa,i,,0,<o,(,-,,)[G(-m cos (¢ - ¢,11]"}

.e [s(O)(m¢,)]"j2Yo cos OCkoa sin 0i

"[-e jk°aalnO'cos(¢-¢') [F(-_ cos (¢ - ¢i))]* )

+ Yo sin o_cos O,eJko<°'°,= { e--ikoa'i"°, ¢, [g(°)( rn(I,1)

m

-J koa sin Oi9(1)(m01 )] *

_ejkoo,_nO,_o,(¢-_,)[G(-rn cos(¢ - ¢_))

-j koa_n-oiG(i)(-mcos(¢- ¢i)] "} ...... (18)

have been found to be more accurate and can be used instead of (17). The

Fock functions (G, G (i) and F) are again defined in Logan [13]. These

surface field expressions may be used to calculate the entries of the column

vector {f_,t} efficiently via a numerical evaluation of (13). In particular,

the modal series (16) is used when koasinOi < 10 and either (17) or (18)

for koasinOi > 10 as appropriate. With the excitation functional and the

FEM-BI matrix now specified, the BiCG-FFT method [16, 17] may be used

to determine the unknown electric fields within the cavity.

4 Scattering

Once the cavity aperture and volume electric fields have been determined by

solving (2) for an external excitation, the radar cross section (RCS) may be

calculated. The far-zone fields may be computed by integrating the aperture

fields with a suitable Green's function. In this section we present the relevant
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formula for calculating thefar-zonefields and hencethe RCSdue to excitation
by a planewave (14).

To determinethe far-zonefields,webeginwith the integral representation
for the scatteredmagnetic field in terms of the aperture fields• We have

bI'(r,O,¢) = jYokoa fs_2(r,O,¢;a,_',z' 1.

[_(a,¢',z') x/_(a, ¢',z')] de' dz' (19)

with (r,0,¢) indicating the observation point in spherical coordinates. When

the observation point is very far from the cylinder, the dyadic Green's func-

tion in (19) can be replaced by its far-zone representation

= e-,kor[ao,O;;+aozO_+ a_*_;_'] (20)a_(_,0, ¢;a, ¢',z') ~ ko---T-

where the unprimed unit vectors are functions of the observation position

and the primed ones are functions of the integration point in (19). The

components of this far-zone Green's function

GO* j 2kocosO .k ¢o,0z' oo n • , '.... eJ o eJn(_+(_,-* ))

(2-_)2 (koasinO) 2 n=_-oo H'(2)(koasinO)

• t O0

Go . 3_ 2_dk o¢o_oz 1 • . '~ eV_(_-+(¢-¢ })
(2_r) 2a- .=__ H'O)(koasinO)

G, ¢ j 2 , _ 1 _ '~ - e jk°_°'°_ y_ eJ"(_ +(¢-¢ )) (21)
(2_) 2 asin0 _=-oo H(_2)(koasinO)

are determined by a mode matching procedure. As one might expect, these

series converge rather slowly for large koa sin 0. They must therefore be recast

in another form by employing Watson's transformation and Fock theory as

was done previously (17). In doing so, we obtain

0 ,2 [ m o9(, ) ].Go ¢ ~ kocoS47r eJk°_°"°z Y_(-1)Pe-ik°_'i"°¢" g(°)(rn_p)-J koasin (rnC_p)
p=l

ao,  o in0 , ' [ 1."" eJk°c°sOz E e-jkoa_nOOP g(°)(mCp)
4re

p=l

m 2 , 2 •

a** ~ __ _k.oo.o.X _-j_oo.,°o,_[/,o)(_¢.)] (22)
2aTr sin 0

p=l

15



where the Fock functions are the sameas those used with (17) due to reci-
procity. As was the casefor the plane wavesource,Goriainov's [15] approx-
imations are more accurate in the geometrical optics region (¢' _ ¢) and
similar expressionsmay be obtained for (22) as wasfound for (17). The far-
zone scattered field can be computed numerically by using (19) and either
the seriesOrasymptotic formula as appropriate. Having done so,the RCS is
calculated from

o, ¢)1 (23)
= lirn

Above we presented a FEM-BI formulation suitable for modeling cavity-

backed structures embedded in a circular cylinder. Next, we consider a few

numerical caicuiations aimed at validating tlals formulation and in giving

us an appreciation on how the cylinder's curvature influences the scattering

parameters.

5 Results

Having solved for the electric fields induced by an incident plane wave, the

resulting RCS data must be validated with known results. As previously

mentioned, available measured or computed data is rather scarce and as

a consequence, we are forced to rely on limiting cases in order to validate

this work. As the radius of curvature decreases, a cylindrical-rectangular

cavity will approximate a planar-rectangular cavity. Another limiting case

involves comparison of an elongated 3-D cavity with a corresponding 2-D

cavity for normal incidence (0i = 90°). Finally, we may compare our infinite

cylinder results with a finite Body of Revolution (BOR) model for certain

polarizations and angles of incidence. We begin with the quasi-planar case.

The first validation effort for scattering by cavity-backed patch antennas

relies on the fact that a small patch on a very large radius cylinder is quasi-

planar and approximates rather well an equal sized planar patch. For our test

we chose as a reference a planar 1.448" x 1.083" patch residing on a 2.89" x

2.10" x 0.057" cavity filled with a dielectric having er = 4. The equivalent

patch on a 10_ cylinder is 6.46 ° x 1.083" residing on a 12.90 ° x 2.10" x 0.057"

cavity. Figure 4 shows the results for the patch on a large radius cylinder

with corresponding data for the planar cavity-backed patch. Clearly, the two

16
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Figure 4: Comparison of RCS for a planar patch (1.488" x 1.083") residing on

a 2.89" x 2.10" x 0.059" cavity filled with er = 4 dielectric and a corresponding

quasi-planar patch on a large radius (10A0) cylinder.
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RCS patterns are in excellent agreement, and although figure 4 illustrates

only monostatic scattering in the _ = 0 ° plane, additional runs for normally

incident monostatic scattering and various bistatic situations yield similar

agreement.

Comparisons may also be made for elongated cavities and 2-D MoM re-

sults. Long narrow cavities have very little axial interaction for principal

plane (0 = 90 °) excitation and therefore results based on this formulation

should compare well with corresponding 2-D data. It is well known that the

RCS of the 3-D scattering body of length L >> X0 is related to the corre-

sponding 2-D scattering of the same cross section via the relation

= _r2D (24)

Such a comparison is shown in figure 5 for monostatic scattering by a 45 ° x

5A x 0.1i cavity for both principal polarizations. Once again the agreement

between the two results is excellent, thus providing a partial validation of the

formulation for highly curved geometries. We remark that similar agreement

has been observed for bistatic scattering in the 0 -- 90 ° plane.

The planar approximation eliminates the effects of curvature, which is a

primary interest in this work, and the 2-D comparisons done above are only

valid for normal incidence. To consider oblique incidence on a highly curved

structure, we resort to comparisons with a Body of Revolution (BOR) code

for wraparound cavities. Since the BOR code can only model finite struc-

tures, we simulate an infinite cylinder by coherently subtracting the far-zone

fields of the finite structure without a cavity from similar data which includes

the cavity. Such an procedure mimics common measurement practices and

was found suitable for near normal incidence and quite acceptable near graz-

ing incidence in the case of H-polarization (a - 90°). An example calculation

for the latter case is given in figure 6 where a bistatic scattering pattern is pre-

sented in the _b= 0° plane due to a plane wave incident at (9i = 90°,b_ = 0°).

Clearly, there is good agreement between the FEM-BI results and data based

on the BOR formulation.

The previous comparisons serve to validate the formulation. Having done

so, it is instructive to examine the effect that curvature has on the scattering

properties of cavity-backed patch antennas. Consider a 2 cmx 3 cm patch

residing on a 5.0 cmx 6.0 cm × 0.07874 cm cavity which is filled with

a dielectric having c, = 2.17. Figures 7 and 8 illustrate the behavior of

18



(.9

=o

' " ' I ..... I ..... I .... I "

FEM-BI: E-pol

......... FEM-BI: H-pol

® 2-D MoM: E-pol

[] 2-D MoM: H-pol

30.0 60.0

®

90.0 120.0 150.0 180.0

Angle (_) [deg]

Figure 5: Comparison of 2-D MoM results and FEM-BI RCS results for a

45 ° x 5Ao × 0.1A0 air-filled cavity.
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Figure 6: Comparison of the RCS computed via the FEM-BI method and a

BOR code for a 3Ao x 0.1Ao air-filled wraparound cavity excited by a normally

incident H-polarized (a = 90 °) plane wave.
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this geometry as a function of frequency and curvature. Evidently, the

resonance behavior of this patch is sensitive to curvature for both principal

polarizations. The frequency response for E-polarization is more sensitive to

curvature since the radiating surface field component is parallel to tile long

side of the patch and cavity. If the patch and cavity were oriented so that the

long side is in the _-direction, the response to H-polarization would exhibit

greater sensitivity. Such an effect is important to low observable antenna

designers since they want to operate the antenna in the region of lowest

RCS. This low return region is a consequence of delicate cancellations due to

the physical layout of the aperture. Such cancellations are not as complete

for highly curved structures as they are for planar cavities.

Conformal antenna designers often use wraparound antennas to achieve

omnidirectional coverage. Two different configurations are typically used: a

wraparound cavity where the cavity is filled with a single continuous collar

of dielectric and discrete cavities symmetrically placed around the circum-

ference of the cylinder. These two configurations are shown in figure (9).

Since near resonance, the radiation properties of these two types of antennas

is identical, any RCS advantage which one might possess could govern the

appropriate choice of arrays. Figure 10 compares the E-polarized monos-

tatic scattering at 3 GHz in the 0 = 90 ° plane for a wraparound cavity and

four discrete cavities; where the patches and cavities are identical to those

used in the previous example. Not surprisingly, the wraparound structure

has a higher return due to coupling within the substrate. However, since in

this case the scattered field is due to the z component of the surface field

(C-directed magnetic currents), both cavities yield large scattered fields in

the four directional lobes. Figure 11 is the corresponding comparison for

H-polarization. In this case, the scattered field is attributed to the ¢ compo-

nent of the surface fields (z-directed magnetic currents). Therefore, substrate

modes diffract near the patch resulting in discrete lobes for the discrete array

while creeping waves shed isotropically for the continuous wraparound cav-

ity. Low observable designs will favor discrete cavity arrays over wraparound

cavities since the scattering may be channeled in preferred directions and

the overall scattering level is consistently lower. A final example is shown in

figure 12 where we observe that other than the expected higher scattering

from the wraparound cavity, the scattering behavior of the two arrays is very

similar.
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Figure 7: RCS frequency response for a 2 cm x 3 cm x patch residing in a

5 cm x 6 cm × 0.07874 cm cavity with er = 2.17 as a function of curvature

for E-polarization (a = 0°).
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Figure 8: RCS frequency response for a 2 cm x 3 cm x patch residing in a

5 cm x 6 cm × 0.07874 cm cavity with cT = 2.17 as a function of curvature

for H-polarization (a = 90°).
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Figure 9: Illustration of two types of arrays: (a) wraparound array; (b)

discrete cavity array
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Figure 10: Comparison of E-polarized monostatic RCS at 3 GHz for a four

patch array placed on a wraparound collar or in four discrete cavities. The

patches and cavities are identical to the one used in figure 7. The observation

plane is/9 = 90 °.
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Figure 11: Comparison of H-polarized monostatic RCS at 3 GHz for a four

patch array placed on a wraparound collar or in four discrete cavities. The

patches and cavities are identical to the one used in figure 8. The observation

plane is O = 90 °.
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Figure 12: Comparison of H-polarized monostatic scattering at 3 GHz by a

four patch array placed on a wraparound collar or in four discrete cavities.

The patches and cavities are identical to the one used in figure 8. The

observation plane is ¢ = 0 °.
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6 Conclusions

In this paper, we have presented a Finite Element Method - Boundary Inte-

gral technique suitable for electromagnetic scattering calculations for cavities

embedded within a circular, metallic cylinder. This formulation is analogous

to the FEM-BI approach used by Jin and Volakis [1, 5, 6] and may accord-

ingly be used for the analysis of scattering by a large array of cavity-backed

patch antennas. These cavities need not be identical, periodically spaced or

homogeneously filled and may in fact may possess lumped impedance loads

or surface metallization layers. The FEM approach employs vector finite el-

ements which properly represent the electromagnetic fields and possess high

geometrical fidelity for cylindrical-rectangular cavities. Such elements were

presented and are analogous to the bricks used for modeling rectangular

cavities. In addition, we presented an efficient method for evaluating the on-

surface and far-zone dyadic Green's functions. The presented formulation is

amenable to solution using the BiCG-FFT method provided uniform zoning

is used across the aperture - and as a consequence, this implementation has
low computational and memory demand. We have presented some validation =

of this work with appropriate limiting cases which provides further archival

reference data. In addition, we showed how this formulation may be used to

influence conformal antenna designs.
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¢r(¢ ¢s)(¢- ¢,)d¢ (A-l)
I

Each of the above unevaluated integrals is of the form

u 1 1

(A-2)

The integrals I_: )'(2) are used in the assembly of the FEM portion ([.4]) of

the system.

B Fock Functions

The asymptotic form of the dyadic Green's function with observation both on

the surface of the cylinder and in the far field involves Fock functions. These

have been extensively studied and tabulated by Logan [13]. The numerical

evaluation of these functions are performed either for small arguments or

large arguments.

The on-surface Fock functions used in this paper are

,,(,,)= !_,,,i_,_Z° _(")_-_',t,-"
2 V lr e-._'_rl 3 W2(T )

W2(T) _--j('r dT

I

u(() = e_3"/4 Joo° (B-l)

J

where w2(r) and its derivative w2(r ) denote Airy functions of the Second

Kind. For small arguments (( < 0.6), the asymptotic expansion of (B-l) is

given by

X/__ 7 7 -- ..9_(() ~ 1.o- --7-_ + j _,_,_+ 5-i_/_e-_ + ...

,_ .,, ,_ .5 3 5v/-_-_-_,i.-_u(_) ~ 1.0- _:_-,_ +_7_ + v. +''" (B-2)

while a rapidly converging residue series is used for ( > 0.6

lO

~ = Z (4)-'
n----|

z

g
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10

u(_) ,.,, = 2eJ_ v/'_ y_ (r,) -1 e -j_" (B-3)
n=1

I

where r,, and r,_ are zeros of w2(r) and w_(r), respectively. Those zeros are

given in the following table

Table B-1
I

Zeros of the w2(r) and w2(r )

r. = [r.le 3 and q = Ir.[e-"_

IT l Irlln

1 2.33811

2 4.08795

3 5.52056

4 6.78661

5 7.94413

6 9.02265

7 10.0402

8 11.0085

9 11.9300

10 12.8288

1.011879

3.24819

4.82010

6.16331

7.37218

8.48849

9.53545

10.5277

11.4751

12.3848

The far-zone Fock functions are given by

jl ej&

jt ejO .

f(')(¢) = "_ fr w--'_ dv

C(')(O=

F(')(O= (B-4)

!

where wl(r) and its derivative wl(r) denote Airy functions of the First Kind

and the integration contour is given by Logan [13]. These functions, g(O)(_),

gO)(_) and f(o)(_), may be calculated using
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= 2.0e-J3 _<-1.3
6 c(m)

= 1.39937+ _ m! (a_)" -1"3 -< ( -< 0"5
rn----1

10 e[ _°f'(m)_]

= _ 0.5 < _ _<4.0
o/(m)Ai(m)m=l

[-(0.8823-j0.5094)_-j
= 1.8325e ( > 4.0 (B-5)

g(1)(_) ( 0.25 ,3= -j2.0 (2+j ( (4 ]e-'3 (<-2.8

= _ (_)m-x _2.8<__<0.5
m----!

1o e[,,,,(m)_]

= aY_ Ai(m) 0.5<__<4.0
m----1

= -1.8325 (0.8823- j0.5094 + j_2)e[-(°'ss23-J°s°o4)_-J_]

0.25 0.5 .£
)f(o)(_) = y2_ 1 - _-T+ _/e-,3

< --1.1

_(m)
= 0.77582 + e-J'c/a__f_= m! (_)m

lo e[,,,_(m)_]

-- e-J'q3 _ Ai'(m) 0.5<__<4.0
m-_ X

= 0.0 _>4.0

-1.1 <_<0.5

(B-7)

with constant x = e -js"/6 and the coefficients for (B-5) and (B-6) given in

the following table
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Table B-2
Constantsfor (B-5) and (B-6)

c(m) a'(rn) ai(m)ITI

1

2

3

4

5

6

7

8

9

10

0.7473831

-0.6862081

-2.9495325

-3.4827075

8.9378967

56.1946214

1.01879297

3.2481975

4.82009921

6.16330736

7.37217726

8.48848673

9.53544905

10.52766040

11.47505663

12.38478837

0.5356566

-0.41901548

0.38040647

-0.35790794

0.34230124

-0.33047623

0.32102229

-0.31318539

0.30651729

-0.30073083

The corresponding constants for (B-7) are given as

Table B-3

Constants for (B-7)

c(m) a(m) Ai'(m)ITI

1

2

3

4

5

6

7

8

1.146730417

0.86284558

-2.0192636

-9.977776

-14.59904

49.0751

2.33810741

4.08794944

5.52055983

6.78670809

7.94413359

9.02265085

10.04017434

11.00852430

11.93601556

12.82877675

0.70121082

-0.80311137

0.86520403

-0.91085074

O.94733571

-0.97792281

1.00437012

-1.02773869

1.04872065

-1.06779386
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